Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 107-113, 2024.
Article in Chinese | WPRIM | ID: wpr-1005259

ABSTRACT

ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

3.
Chinese Acupuncture & Moxibustion ; (12): 793-799, 2023.
Article in Chinese | WPRIM | ID: wpr-980797

ABSTRACT

OBJECTIVE@#To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD.@*METHODS@#A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3β (GSK-3β) in the hippocampus was detected.@*RESULTS@#There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3βwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3β was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05).@*CONCLUSION@#Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3β and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Glycogen Synthase Kinase 3 beta , Tubulin , Alzheimer Disease/therapy , tau Proteins/genetics , Acupuncture Therapy , Hippocampus
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 162-169, 2023.
Article in Chinese | WPRIM | ID: wpr-978462

ABSTRACT

ObjectiveTo observe the effects of modified Shenqiwan on renal function and fibrosis in diabetic nephropathy mice and explore the underlying mechanism based on the glycogen synthase kinase-3β (GSK-3β)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling pathway. MethodFifty male db/db mice and 10 db/m mice were used in this study. The fifty db/db mice were randomly divided into model group, irbesartan group, and low-, medium-, and high-dose modified Shenqiwan groups. The 10 db/m mice were assigned to the normal group. The mice in the low-, medium-, and high-dose modified Shenqiwan groups were administered with modified Shenqiwan in the dosage form of suspension of Chinese medicinal granules by gavage, those in the irbesartan group were given irbesartan suspension by gavage, and those in the normal and model groups were given distilled water of equal volume by gavage. The intervention lasted for 12 weeks. The blood glucose levels, urine albumin-to-creatinine ratio (UACR), and the protein expression levels of GSK-3β, CREB, transforming growth factor-β1 (TGF-β1), E-cadherin, Vimentin, fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and Collagen type Ⅳ (Coll Ⅳ) in the mouse kidneys were recorded before and after treatment. The extent of renal pathological damage was also observed. ResultCompared with the normal group, the model group showed significant increases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), decreased protein expression level of CREB (P<0.05), and severe renal pathological damage. Compared with the model group, the low-, medium-, and high-dose modified Shenqiwan groups and the irbesartan group showed varying degrees of decreases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), increased expression level of CREB protein (P<0.05), and improved renal pathological damage. ConclusionModified Shenqiwan can effectively reduce blood glucose levels, improve renal function, and alleviate fibrosis, and the mechanism of action is related to the inhibition of the GSK-3β/CREB signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 63-70, 2023.
Article in Chinese | WPRIM | ID: wpr-961684

ABSTRACT

ObjectiveTo investigate the effect of Danzhi Xiaoyaosan on the phosphorylation of tau protein and different sites of glycogen synthase kinase-3β (GSK-3β) and phosphoseryl/suanyl phosphate protein phosphatase 2A (PP2A) in the hippocampus of rats with Alzheimer's disease (AD) and its mechanism. MethodThe rat model of AD was established by injecting okadaic acid into the bilateral hippocampus of 90 male Wistar rats in SPF grades. The rats with successful modeling were selected and randomly divided into model group, aricept group (0.5 mg·kg-1), and Danzhi Xiaoyaosan high, medium, and low groups (17.55, 8.77, and 4.38 g·kg-1), and then gavaged for 42 d, once a day. Morris water maze was used to detect the learning and memory ability of rats, Nissl's staining was used to observe the morphological structure of neurons in the hippocampus, and Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of tau protein, GSK-3β, and PP2A. Western blot was used to determine the protein expression levels of tau protein, GSK-3β, and PP2A. ResultAs compared with the control group, the learning and memory abilities of the rats in the model group were significantly decreased (P<0.01), and the hippocampal CA3 region cells had abnormal structure, disorderly arrangement, and decreased number. The expression levels of GSK-3β mRNA, GSK-3β, p-GSK-3β-Tyr216, p-PP2A, and p-tau were increased in the model group as compared with the control group (P<0.01), and those of p-GSK-3β-Ser9 and PP2A decreased significantly (P<0.01). As compared with the model group, the learning and memory ability of the Aricept group and the Danzhi Xiaoyaosan groups were improved (P<0.05, P<0.01), and the cell morphology and the number of hippocampal CA3 regions were better. The mRNA expression levels of PP2A and tau in the Aricept group were significantly up-regulated (P<0.05), the mRNA expression level of GSK-3β was significantly down-regulated (P<0.01), and the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-PP2A were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A in the high-dose Danzhi Xiaoyaosan group was significantly up-regulated (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of p-PP2A, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of GSK-3β was significantly down-regulated in the medium-dose Danzhi Xiaoyaosan group (P<0.01), the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A was significantly up-regulated in the low-dose Danzhi Xiaoyaosan group (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of GSK-3β and p-GSK-3β-Tyr216 were down-regulated (P<0.05, P<0.01), and those of p-GSK-3β-Ser9 and PP2A were significantly up-regulated (P<0.01). ConclusionDanzhi Xiaoyaosan can improve the learning and memory ability of rats with AD, and its mechanism may be related to the regulation of the activities of GSK-3β and PP2A protein-related sites and the phosphorylation of tau protein.

6.
Chinese journal of integrative medicine ; (12): 405-412, 2023.
Article in English | WPRIM | ID: wpr-982291

ABSTRACT

OBJECTIVE@#To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.@*METHODS@#Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.@*RESULTS@#Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).@*CONCLUSION@#Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.


Subject(s)
Male , Animals , Mice , Corticosterone , Fluoxetine/metabolism , Depression/chemically induced , Glycogen Synthase Kinase 3 beta/metabolism , Reproducibility of Results , Antidepressive Agents/pharmacology , Hippocampus , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Behavior, Animal , Disease Models, Animal , Mammals/metabolism
7.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 499-505, 2022.
Article in Chinese | WPRIM | ID: wpr-956115

ABSTRACT

Objective:To investigate the effects of Danggui Shaoyao San(DSS) on cognitive function and neuronal apoptosis in vascular dementia (VD) rats.Methods:Fifty SPF grade male SD rats aged 6-7 weeks were randomly divided into sham operation group, model group, positive drug group (nimodipine group, 9.45 mg·kg -1), DSS low-dose group (1.6 g·kg -1), DSS high-dose group (6.4 g·kg -1) according to random number table, with 10 rats in each group. The VD rat model was established by permanent ligation of bilateral common carotid arteries. Seven days after modeling, the rats in different groups were administrated by gavage according to corresponding interventions, once a day, for 28 days. Morris water maze test was used to evaluate the learning and memory ability of rats.The levels of malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS) in hippocampal area of rat brain were detected by ELISA.The protein expressions of apoptosis-related proteins Bcl-2, Bax, cleaved Caspase-3 and leptin receptor/glycogen synthase kinase 3β microtubule-associated protein tau(LEP-R/GSK-3β/tau) signaling pathway were detected by Western blot. GraphPad Prism 9 software was used for statistical analysis of data, repeated measure ANOVA and one-way ANOVA were used for comparison between multiple groups, and SNK- q test was used for further pairwise comparison. Results:The results of water maze experiment showed that the time and group interaction of escape latency of the five groups were not significant ( F=1.223, P>0.05), the main effect of group and time were significant ( F=74.65, 18.32, both P<0.05). On the 5th day, the escape latency of nimodipine group, DSS low-dose group and DSS high-dose group were lower than that of model group ( q=14.425, 7.477, 21.392, all P<0.05), and that of DSS high-dose group was lower than that of nimodipine group ((15.28±2.46)s, (22.78±3.31)s, q=6.966, P<0.05). There was statistically significant difference in the number of crossing platforms of rats in 5 groups ( F=17.331, P<0.05). The numbers of platform crossing in nimodipine group and DSS high-dose group were higher than that in model group ( q=6.789, 10.635, 5.270, all P<0.05), and the number of platform crossing in DSS high-dose group was higher than that in nimodipine group ((6.84±1.63), (5.22±1.75), q=3.846, P<0.05). ELISA results showed that the levels of MDA, ROS and SOD in hippocampal tissues of rats in 5 groups were significantly different ( F=49.338, 38.518, 15.440, all P<0.05). The levels of MDA and ROS in hippocampus of DSS high-dose group were lower than those of model group ( q=16.061, 13.541, both P<0.05) and nimodipine group ( q=4.317, 5.162, both P<0.05), SOD level of DSS high-dose group was higher than those of model group ( q=8.179, P<0.05) and nimodipine group ( q=4.135, P<0.05). Western blot results showed that the levels of apoptosis-related proteins Bcl-2/Bax and Caspase-3 were significantly different in the 5 groups ( F=30.692, 43.384, both P<0.01). The level of Bcl-2/Bax in DSS high-dose group was higher than that in model group ( q=10.562, P<0.05) and nimodipine group ( q=3.820, P<0.05), the level of Caspase-3 was lower than those of model group ( q=12.139, P<0.05) and nimodipine group ( q=7.734, P<0.05). The levels of LEP-R, p-GSK-3β, p-S404 tau and p-S202 tau expression level in hippocampal tissues of the 5 group were significantly different ( F=80.927, 59.230, 159.784, 105.923, all P<0.01). The levels of LEP-R and p-GSK-3β protein in nimodpine group and DSS high-dose group were higher than those in model group ( q=16.275, 20.104, both P<0.05; q=12.942, 17.257, both P<0.05), the levels of p-S404 Tau and p-S202 Tau in the two groups were lower than those in model group ( q=19.121, 27.456, both P<0.05; q=17.559, 22.780, both P<0.05). The levels of LEP-R(0.98±0.15), (0.86±0.14)) and p-GSK-3β((0.95±0.16)s, (0.82±0.13)) in DSS high-dose group were higher than those in nimodipine group ( q=3.829, 4.314, both P<0.05), the levels of p-S404 Tau((0.41±0.03)s, (0.58±0.07)) and p-S202 Tau((0.48±0.05)s, (0.59±0.06)) in DSS high-dose group were lower than those of nimodipine group ( q=8.335, 5.220, both P<0.05). Conclusion:DSS can improve the cognitive function of VD rats, and the mechanism may be related with reducing oxidative stress level, inhibiting neuronal apoptosis, and upregulating LEP-R/GSK-3β/Tau signaling pathway.

8.
Journal of Environmental and Occupational Medicine ; (12): 1095-1101, 2022.
Article in Chinese | WPRIM | ID: wpr-960530

ABSTRACT

Background Aluminum (Al) can cause irreversible damage to neurons and synapses function, and the mechanism may be connected to mitochondrial damage caused by glycogen synthase kinase-3β (GSK-3β) regulating dynamin-related protein 1 (DRP1), resulting in inhibition of the growth of neuronal protrusions. Objective To investigate the role of GSK-3β regulating DRP1 in the inhibition of primary hippocampal neurite growth induced by Al. Methods Neurons were extracted from the hippocampus of newborn mice (≤24 h old) for primary culture. On day 6, the purity of neurons was detected by immunofluorescence. On day 10, neurons with good growth state were selected for Al exposure and GSK-3β inhibitor SB216763 (SB) intervention. The experiment design included a blank control group, a dimethyl sulfoxide (DMSO) group, an Al (20 μmol·L−1) group, a SB (1 μmol·L−1) group, and a SB (1 μmol·L−1) + Al (20 μmol·L−1) group. After primary hippocampal neurons were treated with Al or SB for 48 h, cell viability was detected by CCK-8 assay, the mitochondrial morphology of primary hippocampal neurons was observed by transmission electron microscopy, the total protrusion length of primary hippocampal neurons was scanned and analyzed by laser confocal imaging, and their complexity was analyzed by Sholl analysis. The expression levels of phospho-GSK-3β, GSK-3β, and DRP1 were detected by Western blotting. Results The immunofluorescent results showed that the purity of primary neurons was higher than 90%. After the Al exposure and the SB intervention for 48 h, compared with the blank control group, there was no obvious difference in cell viability in the DMSO group and the SB group (P>0.05), and the Al group showed reduced cell viability (P=0.006); there was no obvious difference in cell viability between the SB+Al group and the Al group (P>0.05). Compared with the blank control group, there was no obvious difference in the average total length of protrusion in the DMSO group and the SB group (P>0.05), and the Al group showed reduced average total length of neurite (P<0.001); the average total neurite length in the SB+Al group was significantly increased compared with that in the Al group (P=0.001). The results of Sholl analysis revealed that, within 130 μm from the cytosol, the number of intersections of neurons in each group increased with the increase of distance. Above 130 μm from the cytosol, the number of intersections of neurons in each group decreased gradually with increase of distance. At 130 μm and 310 μm from the cytosol, compared with the blank control group, the number of neuronal intersections in the DMSO group and the SB group had no obvious difference (P>0.05), and that in the Al group was significantly reduced (P<0.05); there was no obvious difference in the number of neuronal intersections between the SB+Al group and the Al group (P>0.05). The mitochondrial structure of the blank control group was complete and the crest was clearly visible; there was no apparent variation in the mitochondrial structure in the DMSO group and the SB group; the mitochondria in the Al group were vacuolated and the crista disappeared; the SB+Al group showed clearer crista than the Al group. The difference in GSK-3β phosphorylation level among groups was statistically significant (F=45.841, P<0.001). Compared with the blank control group, the GSK-3β phosphorylation level showed not significantly different in the DMSO group (P>0.05), increased in the SB group (P=0.022), and significantly reduced in the Al group (P<0.001); the GSK-3β phosphorylation level was significantly higher in the SB+Al group than in the Al group (P<0.001). The difference in DRP1 protein level among groups was statistically significant (F=8.389, P=0.003). Compared with the blank control group, the DRP1 protein levels in the DMSO group and the SB group were not significantly different (P>0.05), and significantly increased in the Al group (P=0.001); the DRP1 protein level in the SB+Al group was significantly lower than that in the Al group (P=0.029). Conclusion Al may increase the level of DRP1 protein by activating GSK-3β, causing mitochondrial damage and inhibiting neuronal protrusions growth.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 96-102, 2022.
Article in Chinese | WPRIM | ID: wpr-940697

ABSTRACT

ObjectiveTo study the effect of icariin on the proliferative capacity of hepatocellular carcinoma cell line CLC5 and the underlying mechanism. MethodThe targets of icariin were screened out by network pharmacology, and the target network and protein-protein interaction (PPI) network were constructed to predict the possible targets and pathways of icariin. CCK-8 assay was employed to explore the effects of different concentrations (0, 6.25, 12.5, 25, 50 μmol·L-1) of icariin on the viability of CLC5 cells. Further, CLC5 cells were treated with 0, 25, 50 μmol·L-1 icariin, and the effect of icariin on CLC5 cell proliferation was examined by Edu-488 assay and clone formation assay (CFA). Western blot was employed to measure the expression levels of proteins in the protein kinase B (Akt)/glycogen synthase kinase 3β (GSK3β)/cell cycle-dependent kinase (CDK) pathway in the CLC5 cells exposed to different concentrations of icariin. ResultNetwork pharmacological analysis revealed that icariin may inhibit the hepatocellular carcinoma via cell cycle arrest and inhibition of tumor cell proliferation. Compared with the blank group, icariin decreased the viability of CLC5 cells in a time- and concentration-dependent manner (P<0.01) and reduced the positive rate of Edu-488 and the colonies in CFA (P<0.05, P<0.01). Moreover, icariin down-regulated the protein levels of p-Akt, p-GSK3β, CDK4, and CyclinD1 (P<0.05, P<0.01). ConclusionIcariin may block cell cycle to suppress the proliferation of CLC5 cells via inhibiting the Akt/GSK3β/CDK pathway.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 72-80, 2021.
Article in Chinese | WPRIM | ID: wpr-905066

ABSTRACT

Objective:To investigate the effect of Huangjingwan (HW) on the activities of glycogen synthase kinase-3β (GSK-3β), protein phosphatase 2A (PP2A) and the mechanism in inhibiting tau protein hyperphosphorylation in the hippocampal neurons of mice with Alzheimer's disease. Method:After subcutaneous injection with 1.0% D-galactose (0.14 g·kg-1·d-1) into the back and neck of mice for 4 weeks, the right ventricle of mice was injected with 2 μL (75 ng) of okadaic acid for one time to make AD model, and the successfully modeled AD mice were selected by Morris water maze. Then, the selected AD mice were randomly divided into AD model group, memantine group (1.3×10-3 g·kg-1·d-1) and HW group (2.5 g·kg-1·d-1). In addition, the sham model control group and the normal control group were set up. At the same time, 2 μL normal saline was injected into the right ventricle of mouse in the sham model control group for modeling control. Two weeks after modeling, the mice in the two experimental drug groups were given the corresponding dose of the experimental drug by gavage for 4 weeks. In addition, after 2 weeks of AD modeling, mice in control group and AD model group were intragastrically administrated with the same amount of normal saline daily for 4 weeks. The mice in normal control group were only given daily feed. At the end of gavage, all the mice were tested by the open field experiment and jumping platform experiment to evaluate the differences in exploratory activity ability, anxiety level and learning and memory ability. The number of neurons in CA1 and CA3 areas of hippocampus in all the mice was detected by Nissl staining. Quantitative real-time polymerase chain reaction (Real-time PCR) was used to detect mRNA expressions of GSK-3β and PP2A in hippocampus of mice in each group. Protein expressions of GSK-3β, PP2A, phosphorylated tau (p-tau) and total tau protein (t-tau) in hippocampus of mice in each group were detected by Western blot. Result:Compared with the normal control group, mice in AD model group showed an obvious dementia state, which was characterized by a lower spontaneous activity, lower exploration behavior ability, higher anxiety level, less movement and easier to stay and hide, longer learning response time, significantly increased number of learning and memory errors, and decreased numbers of hippocampal neuron in CA1 and CA3 areas, and reduced mRNA and protein expressions of PP2A, mRNA and protein expressions of GSK-3β, p-tau protein and the ratio of p-tau/t-tau were all increased significantly (P<0.01), while expression of t-tau protein was decreased, with no significant difference. Compared with the AD model group, mice in the HW group showed a higher spontaneous activity, higher exploration ability, lower anxiety level, higher learning and memory performance, and the numbers of hippocampal neuron in CA1 and CA3 areas increased, while mRNA and protein expressions of PP2A increased, and the mRNA and protein expressions of GSK-3β, the expression of p-tau protein and the ratio of p-tau/t-tau were all decreased significantly (P<0.01), but with no significant difference in the protein expression of t-tau. Conclusion:HW can inhibit tau hyperphosphorylation in hippocampal neurons of AD mice, restore tau protein function, protect hippocampal neurons, and exert an anti-AD effect, which may be related to the regulatory mechanism in the activity balance between GSK-3β and PP2A in hippocampal neurons.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 15-22, 2021.
Article in Chinese | WPRIM | ID: wpr-906511

ABSTRACT

Objective:To observe the effect of Zuoguiwan on bone metabolism and Wnt/<italic>β</italic>-catenin signaling pathway in ovariectomized osteoporotic rats model, and to explore the molecular biological mechanism of Zuoguiwan in the prevention and treatment of osteoporosis. Method:The rat model of postmenopausal osteoporosis was established by bilateral ovariectomy, 60 female SD rats were randomly divided into sham operation group, model group, positive group (estradiol valerate tablet 0.05 mg·kg<sup>-1</sup>·d<sup>-1</sup>) and low, middle and high dose groups of Zuoguiwan (5.5,11,22 g·kg<sup>-1</sup>·d<sup>-1</sup>).After successful establishment of the model in the 13<sup>th</sup> week, intragastric administration (<italic>ig</italic>) was given once a day for a total of 12 weeks. After administration, the histomorphological changes of femur in rats were observed by hematoxylin-eosin (HE) staining, the bone mineral density (BMD) and bone mineral content(BMC) of femur were measured by dual energy X-ray apparatus, and the biomechanical properties of bone were measured by MTS Acumen3 biomechanical testing system. The contents of bone alkaline phosphatase (BALP), bone glaprotein(BGP),estradiol (E<sub>2</sub>) ,and tartrate-resistant acid phosphatase (TRAP), type Ⅰ procollagen N-terminal propeptide (PINP) in serum were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the protein level of Wnt2,<italic>β</italic>-catenin,low density lipoprotein related receptor protein 5 (LRP5) and the phosphorylation level of glycogen synthase kinase-3<italic>β</italic>(GSK-3<italic>β</italic>) in rat tibia. Result:Compared with sham operation group, the maximum load and stiffness of BMD,BMC, in the model group decreased significantly(<italic>P</italic><0.01), the contents of E<sub>2</sub> and PINP in serum decreased significantly(<italic>P</italic><0.01), the content of BALP,BGP,TRAP increased significantly(<italic>P</italic><0.01), the expression levels of Wnt2,p-GSK-3<italic>β </italic>Ser9,LRP5 and <italic>β</italic>-catenin protein in bone tissue decreased significantly(<italic>P</italic><0.01), the trabecula of femur became thinner and thinner, the number of bone trabeculae decreased. Compared with model group, the maximum load and stiffness of BMD,BMC, in estradiol group and Zuoguiwan group were significantly increased (<italic>P</italic><0.05,<italic>P</italic><0.01), the contents of serum E<sub>2</sub> and PINP were significantly increased (<italic>P</italic><0.05,<italic>P</italic><0.01), the content of BALP,BGP,TRAP was significantly decreased (<italic>P</italic><0.01), and the expression level of Wnt2,p-GSK-3<italic>β</italic> Ser9,LRP5, <italic>β</italic>-catenin protein in bone tissue was significantly increased (<italic>P</italic><0.05,<italic>P</italic><0.01) , the trabeculae of femur became thicker, the number increased, the structure was basically clear. Conclusion:Zuoguiwan has a certain preventive and therapeutic effect on osteoporosis in ovariectomized rats, and its mechanism may be related to increasing the level of estrogen, activating Wnt/<italic>β</italic>-catenin signaling pathway, up-regulating the expression of Wnt2 and LRP5 protein, inhibiting the activity of GSK-3<italic>β</italic>, reducing the degradation of <italic>β</italic>-catenin, coordinating the dynamic coupling balance between bone formation and bone resorption, correcting the disorder of bone metabolism and improving bone morphology.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 57-65, 2021.
Article in Chinese | WPRIM | ID: wpr-905988

ABSTRACT

Objective:To observe the effects of Huazhuo Jiedu Shugan Prescription (HZJDSG) on learning, memory, and the expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3<italic>β</italic> (GSK-3<italic>β</italic>) pathway-related proteins in epileptic rats, and to explore its possible mechanism. Method:Forty-eight SPF male SD rats were randomly divided into a normal group, a model group, a sodium valproate (0.19 g·kg<sup>-1</sup>) group, and low- (2.7 g·kg<sup>-1</sup>), medium- (5.4 g·kg<sup>-1</sup>), and high-dose (10.8 g·kg<sup>-1</sup>) HZJDSG groups, with eight rats in each group. The normal group received 0.9% sodium chloride solution (0.035 g·kg<sup>-1</sup>) by intraperitoneal injection, and the other five groups received pentetrazol (PTZ) at the same dose to induce a chronic epilepsy model for a total of 14 times. The drug groups received corresponding drugs and the normal group and the model group received 0.9% sodium chloride solution at the same volume once a day for 28 days. During the drug intervention period, epilepsy was maintained in each modeling group by intraperitoneal injection of PTZ on day 7, 14, 21, and 28. The behavioral changes of rats were observed by Morris water maze and the pathomorphological changes of rat hippocampal neurons by hematoxylin-eosin (HE) staining. The protein expression of phosphorylation Akt(p-Akt)and p-GSK-3<italic>β</italic> was detected by immunohistochemistry and the protein expression of PI3K, Akt, p-Akt, GSK-3<italic>β</italic>, and p-GSK-3<italic>β</italic> by Western blot. Result:Compared with the normal group, the model group showed prolonged platform finding time (<italic>P</italic><0.01), reduced number of platform crossings (<italic>P</italic><0.01), structural damage of neurons in the CA1 region of the hippocampus, down-regulated protein expression of p-Akt and p-GSK-3<italic>β </italic>in the CA1 region of the hippocampus (<italic>P</italic><0.05), and reduced relative expression of PI3K, p-Akt, and p-GSK-3<italic>β</italic> in the hippocampus (<italic>P</italic><0.01). Compared with the model group, the sodium valproate group and the HZJDSG groups showed shortened platform finding time (<italic>P</italic><0.01) and improved neuronal structure in the CA1 region of the hippocampus, while the sodium valproate group and the high- and medium-dose HZJDSG groups exhibited increased number of platform crossings (<italic>P</italic><0.01), up-regulated protein expression of p-Akt and p-GSK-3<italic>β</italic> in the CA1 region of the hippocampus (<italic>P</italic><0.05), and elevated relative expression of PI3K, p-Akt, and p-GSK-3<italic>β</italic> (<italic>P</italic><0.01). Conclusion:HZJDSG can improve the learning and memory of epileptic rats, and its antiepileptic effect may be achieved by the activation of PI3K/Akt/GSK-3<italic>β</italic> pathway-related proteins.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-69, 2021.
Article in Chinese | WPRIM | ID: wpr-905833

ABSTRACT

Objective:To observe the effect of tetrahydroxy stilbene glycoside (TSG) on the expression of glycogen synthase kinase 3<italic>β </italic>(GSK3<italic>β</italic>), cyclic adenosine monophosphate-dependent protein kinase (PKA) and Serine/threonine phosphatase 2A(PP2A) in the brain of amyloid precursor protein/presenilin-1/Tau (APP/PS1/Tau) triple-transgenic mice dementia model. Method:A total of forty-five 8-month-old APP/PS1/Tau transgenic mice were randomly divided into model group, positive control group (Huperzine-A, 0.15 mg·kg<sup>-1</sup>), low, medium and high dose TSG groups (TSG, 0.033,0.1,0.3 g·kg<sup>-1</sup>), with 9 mice in each group, and another nine C5B7L/6J mice of the same age were selected as normal control group. After 60 days of intragastric administration, the general structure of hippocampal neurons was observed by hematoxylin-eosin (HE) staining, immunohistochemical (IHC) was used to detect the expression of PKA protein in the brain of mice in each group, the mRNA expression levels of GSK3<italic>β</italic>, PKA and PP2A were detected by real time quantitative reverse transcription polymerase chain reaction (Real-time PCR), and protein expression levels of GSK3<italic>β</italic> and PP2A were detected by Western blot. Result:Compared with the normal control group, the apoptosis level of neurons in the model group was significantly increased, the protein and mRNA expression levels of GSK3<italic>β</italic> and PKA were significantly increased (<italic>P</italic><0.05, <italic>P</italic><0.01), and the protein and mRNA expression levels of PP2A were significantly decreased (<italic>P</italic><0.05, <italic>P</italic><0.01). Compared with the model group, the apoptosis level of neurons in each treatment group was significantly down-regulated, the protein and mRNA expression levels of GSK3<italic>β</italic> and PKA were significantly down-regulated (<italic>P</italic><0.05, <italic>P</italic><0.01), and the protein and mRNA expression levels of PP2A were significantly increased (<italic>P</italic><0.05, <italic>P</italic><0.01). Conclusion:The mechanism of TSG in the treatment of Alzheimer's disease (AD) may be related to lowering the transcription and expression of GSK3<italic>β</italic> and PKA, increasing the transcription and expression of PP2A.

14.
Journal of Environmental and Occupational Medicine ; (12): 1207-1213, 2021.
Article in Chinese | WPRIM | ID: wpr-960720

ABSTRACT

Background Aluminum can induce irreversible structural and synaptic functional damage, and the associated mechanism may be related to the neurite damage regulated by glycogen synthase kinase-3β (GSK-3β)/collapsin response mediator protein 2 (CRMP2). Objective This experiment is conducted to investigate the effect of aluminum-maltolate [Al(mal)3] on primary hippocampal neuron neurites in mice, and reveal the role of GSK-3β-CRMP2 in this process. Methods The hippocampus of newborn ICR mice (≤ 24 h old) was used for primary neuronal cultures. On the 5th day in vitro (DIV5), neuron purity detection were performed by confocal laser scanning microscopy. On DIV7, the neurons were transfected with lentiviral vector-mediated mNeonGreen. On DIV10, the neurons with mNeonGreen fluorescence in good growth state were treated with Al(mal)3. The stage I experimental groups were blank control group, maltol group, 10 µmol·L−1 Al group, 20 µmol·L−1 Al group, and 40 µmol·L−1 Al group. Then 20 µmol·L−1 Al was used to establish a model of neurite injury and for the intervention. The stage II experimental groups were blank control group, dimethyl sulfoxide (DMSO) group, Al (20 µmol·L−1) group, SB (GSK-3β inhibitor, 1 µmol·L−1), and SB (1 µmol·L−1)+Al (20 µmol·L−1) group. CCK-8 method was used to detect the viability of neurons. The primary hippocampal neurons of mice were scanned with high content analysis system at 0 h and 48 h after Al or SB treatment, and the density and length of neurites were analyzed. Western blotting was used to detect the expression and phosphorylation levels of CRMP2 and GSK-3β in primary hippocampal neurons of mice. Results The immunofluorescence results showed that the purity of primary neurons was more than 90%. Compared with the blank control group in stage I, the cell viability rates of the 10, 20, and 40 µmol·L−1 Al groups were decreased after 48h of Al(mal)3 treatment (P<0.05), while the cell viability rate of the maltol group had no significant change. There was no significant difference in cell viability rate among the DMSO group, the SB group, and the control group after 48h of SB treatment, and the viability rate of neurons in the SB+Al group was higher than that in the Al group (P<0.05) in stage II. The 48 h/0 h ratios of average number and length of neurites in the control group were 90.13%±11.70% and 113.24%±8.34%, respectively. The 48 h/0 h ratios in the Al group were 56.47%±16.36% and 62.06%±6.75%, respectively, which were lower than those in the control group (P<0.05). The 48 h/0 h ratios of average number of neurites in the SB group (99.03%±21.83%) was not significantly different from that in the control group, but the 48 h/0 h ratio of average length of neurites in the SB group (128.72%±15.39%) was higher than that in the control group (P<0.05). The 48 h/0 h ratios of average number (72.59%±10.89%) and length of neurites (93.84%±14.65%) in the SB+Al group were significantly increased compared with those in the Al group (P<0.05). Western blotting results showed that: There was no significant difference in GSK-3β protein level among all groups; compared with the control group (1.00±0.18), the protein level of p-GSK-3β in the Al group (0.45±0.05) was significantly decreased, and that in the SB group (1.32±0.23) was significantly increased; the protein level of p-GSK-3β in the SB+Al group (0.80±0.05) was significantly higher than that in the Al group (P<0.05). Compared with the control group (1.00±0.07), the CRMP2 protein level in the Al group (0.66±0.11) was significantly decreased (P<0.05), while that in the SB group (1.01±0.02) was not significantly changed. Compared with the control group (1.00±0.13), the p-CRMP2 protein level in the Al group (1.50±2.18) was significantly increased, and that in the SB group (0.62±0.09) was significantly decreased (P<0.05); the protein level of p-CRMP2 in the SB+Al group (1.28±0.24) was lower than that in the Al group (P<0.05). Conclusion Aluminum may activate GSK-3β, increase CRMP2 phosphorylation level, and damage neurite growth.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 42-49, 2020.
Article in Chinese | WPRIM | ID: wpr-862658

ABSTRACT

Objective::To observe the effect of compound Kushen injection on the expressions of transforming growth factor-β1 (TGF-β1), drosophila mothers against decapentaplegic protein 3 (Smad3), glycogen synthase kinase-3β (GSK-3β) and β-catenin mice models with radiation-induced pulmonary injury (RIPI), in order to explore its possible mechanism of action. Method::On XStrahl precision radiation research platform for small animals (SARRP), a single 20 Gy bilateral lung field irradiation was performed to establish a mice model of RIPI. Thirty-two mice were randomly divided into normal control group, model group, compound Kushen injection group and dexamethasone injection group. The normal control group and the model group were given an equal volume of 0.9%sodium chloride solution and injected intraperitoneally for 4 weeks. The pathology of lung tissue tissues was observed by using hematoxylin-eosin (HE) staining. Immunohistochemical(IHC) was used to detect the expressions of E-cadheren and Vimentin proteins in mice lung tissues.Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expressions of TGF-β1, Smad3, GSK-3β and β-cateninin.Western blot was used to detect the protein expressions of TGF-β1, Smad3, GSK-3β and β-cateninin. Result::Compared with the normal group, the pulmonary coefficient of the model group was significantly decreased (P<0.01). Inflammatory cell infiltration, pulmonary interstitial edema, congestion, destruction of alveolar structure and partial alveolar atrophy were observed in the lung tissues of the model group. Compared with the model group, in the compound Kushen injection group, the levels of infiltration of lung inflammatory cells and pulmonary interstitial lesions in mice, the expression of Vimentin in lung tissues (P<0.01), and the expressions of TGF-β1, Smad3, GSK-3β and β-cateninin were significantly decreased (P<0.01), whereas the expression of E-cadheren was significantly increased (P<0.01). However, compared with the dexamethasone injection group, in the compound Kushen injection group, the pathological changes of lung tissues were similar, and the expression levels of E-cadheren, Vimentin, TGF-β1, Smad3, GSK-3β and β-cateninin were not significantly different. Conclusion::Compound Kushen injection can alleviate pulmonary fibrosis of lung in the treatment of RIPI, and the mechanism may be associated with inhibiting the mRNA and protein expressions of TGF-β1, Smad3, GSK-3β and β-catenin related to epithelial-mesenchymal transition(EMT), promoting the expression of E-cadheren, and inhibiting the expression of Vimentin, so as to inhibit the occurrence of EMT.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 55-61, 2020.
Article in Chinese | WPRIM | ID: wpr-872759

ABSTRACT

Objective:To investigate the effect of Tianwang Buxin pills on behavior, hypothalamus pituitary adrenal axis (HPA axis), hippocampal glycogen synthase kinase 3β (GSK3β) phosphorylation and brain-derived neurotrophic factor (BDNF) expression in mice with chronic unpredictable stress, and explore its mechanisms for antidepressant-like action. Method:Totally 60 male ICR mice were randomly divided into normal group, chronic stress model group, fluoxetine hydrochloride group (10 mg·kg-1) and Tianwang Buxin pills high, middle and low dose groups (3.6, 1.8, 0.9 g·kg-1). The mice were subjected to the chronic unpredictable stress (CUS) protocol for a period of 28 d to induce depressive-like behavior. Then, a sucrose preference test, open-field test and novelty-suppressed feeding test were performed to detect the behavior changes. The blood, adrenal gland and hippocampus of mice were collected. The contents of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The changes of GSK3β phosphorylation and BDNF expression in hippocampus were detected by Western blot, and the adrenal index was then calculated. Result:As compared with the normal group, the sucrose water preference was significantly decreased (P<0.01), the number of opening activities was significantly reduced (P<0.05), the feeding latency of novelty inhibition was prolonged (P<0.01), the serum ACTH and CORT contents were significantly increased (P<0.05,P<0.01), GSK3β phosphorylation and BDNF expression levels in hippocampus were significantly decreased (P<0.01), and adrenal index was significantly increased in model group (P<0.01). As compared with the model group, Tianwang Buxin pills treatment significantly reversed the CUS-induced behavioral abnormalities in depression model mice (P<0.05, P<0.01), significantly decreased the levels of plasma ACTH and CORT (P<0.01) and adrenal and adrenal gland index (P<0.01), while increased GSK3β phosphorylation and BDNF expression in hippocampus (P<0.05, P<0.01), with its effect similar to that of fluoxetine hydrochloride. Conclusion:Tianwang Buxin pills produced antidepressant-like effects in chronic unpredictable stress mice, and its mechanism may be associated with inhibiting HPA axis activity and up-regulating GSK3β phosphorylation and BDNF protein expression in hippocampus.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 12-19, 2020.
Article in Chinese | WPRIM | ID: wpr-872693

ABSTRACT

Objective:To study the effect of Chaihu Jia Longgu Mulitang on phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt)/glycogen synthase kinase 3β (GSK3β)/β-catenin signaling pathway of hippocampus in rats with depression. Method:A total of 120 SD rats were randomly divided into normal group,model group, and low, middle and high-dose Chaihu Jia Longgu Mulitang groups(3.25,6.5,13 g·kg-1), and fluoxetine group, with 20 rats in each group. Except normal group, the depression model was prepared through chronic unpredictable mild stimulation(CUMS). The normal group and the model group were given normal saline with 6.5 g·kg-1 by gavage. Chaihu Jia Longgu Mulitang groups were intragastrically given corresponding herbal drugs 3.75,6.5,13 g·kg-1, while fluoxetine group was intragastrically given fluoxetine 10 mg·kg-1 for 21 days, once a day. Then the depressive behaviors of rats were observed by sucrose preference test (SPT) and forced swimming test (FST). Western blot was used to detect the protein expressions of PI3K,Akt,GSK3β and phosphorylation level. Result:Compared with normal group,the sucrose preference index was decreased significantly,while the immobility time in FST was increased significantly(P<0.01), the protein expressions of PI3K, p-PI3K p110, p-PI3K p85 were decreased significantly (P<0.01), and expressions of Akt, p-Akt Thr308,p-Akt Ser473, p-GSK3β Ser9 and β-catenin were decreased significantly(P<0.01), while the level of GSK3β, p-GSK3β Tyr216 were increased significantly in model group(P<0.05,P<0.01). Compared with model group,Chaihu Jia Longgu Mulitang could increase sucrose preference index and decrease the immobility time in FST(P<0.01), the protein expressions of PI3K p110 and PI3K p85 was increased significantly (P<0.01), levels of Akt Thr308,Akt Ser473, p-GSK3β Ser9, β-catenin were increased significantly (P<0.01), whereas levels of GSK3β, and GSK3β Tyr216 were decreased significantly. Conclusion:Chaihu Jia Longgu Mulitang could increase protein expression and activity of PI3K in rat hippocampus, activate Akt, inhibit GSK3β kinase activity and prevent β-catenin from degradation, so as to increase PI3K/Akt pathway activity in rat hippocampus, and protect hippocampal neurons.

18.
Chinese Critical Care Medicine ; (12): 719-724, 2019.
Article in Chinese | WPRIM | ID: wpr-754043

ABSTRACT

Objective To explore the protective mechanism of glycogen synthase kinase-3β(GSK-3β) inhibitor TDZD-8 on acute necrotizing pancreatitis (ANP) associated kidney injury in rats. Methods SPF male Wistar rats were randomly divided into four groups (n = 20): sham operation group (Sham group), ANP model group, TDZD-8 intervention group and TDZD-8 control group. The rat ANP model was prepared by retrograde injection of 5% sodium taurocholate into the bile duct; the same volume of normal saline was injected into the pancreatic duct of the Sham group. The TDZD-8 intervention group and the TDZD-8 control group were injected with GSK-3β inhibitor TDZD-8 (1 mL/kg) via the femoral vein 30 minutes before the model or sham operation; the ANP model group and the Sham group were injected equal volume of 10% dimethyl sulfoxide (DMSO). Rats in each group were sacrificed at 12 hours after operation to measure the serum amylase (AMY), blood lipase (LIPA), serum creatinine (SCr) and blood urea nitrogen (BUN) levels and to observe the pathological changes of pancreatic tissues and kidney tissues. Ultrastructural change of renal cells was analyzed by transmission electron microscopy. Serum interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were evaluated by enzyme linked immunosorbent assay (ELISA). The activation of nuclear factor-κB p65 (NF-κB p65) was evaluated by immunohistochemistry assay. The protein expressions of GSK-3β, phospho-GSK-3β (Ser 9), tumor necrosis factor -α (TNF-α), inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1) and interleukin-10 (IL-10) in the kidney were determined by Western Blot. Results Compared with the Sham group, the serum and inflammatory factors levels of the ANP model group were significantly increased, the pathological damage of the pancreas and kidney tissues were severe, the histopathological score was significantly increased, the expression of NF-κB p65 was enhanced in the nucleus of the kidney tissue, and the expressions of GSK-3β, TNF-α, ICAM-1 and iNOS were significantly enhanced, and the expressions of p-GSK-3β(Ser 9) and IL-10 were significantly attenuated. Compared with the ANP model group, TDZD-8 pretreatment significantly reduced serum and inflammatory factor levels in the ANP model group [AMY (kU/L): 5.60±0.30 vs. 10.07±0.34, LIPA (U/L): 1 111.0±110.8 vs. 2 375.0±51.1, SCr (μmol/L): 47.38±1.48 vs. 72.50±2.43, BUN (mmol/L): 17.6±1.0 vs. 26.0±1.0, IL-1β (ng/L):195.90±5.50 vs. 332.40±38.29, IL-6 (ng/L): 246.10±26.74 vs. 385.30±32.19, all P < 0.01]; pathological damage of pancreas and kidney tissue (histopathological score: 7.1±0.4 vs. 12.1±0.3, 301.2±7.5 vs. 433.5±13.8, both P < 0.01) and ultrastructural damage of renal cells were alleviated; the expression of NF-κB p65 in the nucleus was significantly decreased; the expression of p-GSK-3β(Ser 9) was significantly increased, and blocking GSK-3β activity could inhibit the expressions of TNF-α, ICAM-1, iNOS and increase the expression of IL-10, while the expression of GSK-3β in renal tissues was not statistically significant. There were no significant differences between the TDZD-8 control group and the Sham group. Conclusions Blockade of GSK-3βactivity by TDZD-8 exerts the protective effect against kidney injury by inhibiting the inflammation signaling pathway in ANP. It can alleviate histopathological and ultrastructural changes in kidney injury, which protection mechanism is mediated by NF-κB and its related inflammatory mediators.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 36-42, 2019.
Article in Chinese | WPRIM | ID: wpr-802416

ABSTRACT

Objective: To observe the effect of Hei Xiaoyaosan on expressions of β-amyloid 1-42 peptide(Aβ1-42),glycogen synthase kinase-3β(GSK-3β),neprilysin(NEP),insulin-degrading enzyme(IDE) in the hippocampus area of Alzheimer's dementia mice. Method: After weighing, 42 APP/PSI bivalent transgenic mice were randomly divided into 4 groups:10 mice in the model group, 10 mice in the positive drug control group, 11 mice in the high-dose Hei Xiaoyaosan group, and 11 mice in the low-dose Hei Xiaoyaosan group; 10 wild C57BL/6J mice of the same age and strain were used for negative control group. Drugs were administered to mice by gavage once a day for 12 weeks. Then the behavior of all the mice were detected by Morris water maze, the morphological changes in hippocampal neurons were observed by hematoxylineosin(HE) staining, the expressions of Aβ1-42, GSK-3β, NEP and IDE proteins in hippocampus were detected by immunohistochemistry. Result: After 3 months of treatment, compared with negative control groups, the average escaping latency periods prolonged significantly, and the number of cross-platform was decreased significantly in model group (Pβ1-42 and GSK-3β proteins in model mice hippocampus were significantly increased (PPPβ1-42 and GSK-3β proteins in the hippocampus of drug groups were significantly decreased (PPPConclusion: Hei Xiaoyaosan can significantly improve the learning and memory abilities of AD mice, which may be related to the reduction of cognitive impairment in AD mice by regulating abnormal deposition and degradating Aβ in the hippocampus.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-82, 2019.
Article in Chinese | WPRIM | ID: wpr-802236

ABSTRACT

Objective: To observe the effect of puerarin on phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β) in insulin resistant HepG2 cells. Method: HepG2 cells were treated with palmitic acid 0.5 mmol·L-1 and insulin 9×10-4 U·L-1 to induce insulin resistant condition for 24 h. Cell viability was detected by methyl thiazolyl tetrazolium (MTT) assay to determine the concentration of puerarin. This experiment included normal control group, model control group and puerarin groups of different doses (40, 80, 160,320 μg·L-1). Glucose detection kit was used to detect the content of glucose in cell culture supernatant. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels in supernatant of cell culture medium were detected by enzyme-linked immunosorbent assay (ELISA). Hepatic glycogen assay kit was used for detecting the hepatic glycogen content in HepG2 cells. Western blot was applied to detect protein expression levels of PI3K, Akt, p-Akt, GSK-3β and p-GSK-3β. Result: Compared with those in the normal control group, the glucose consumption rate was significantly down-regulated in HepG2 cells in the model control group (PPα and IL-6 were increased in supernatant of cell culture medium (PPβ protein expression was up-regulated (PPα and IL-6 were reduced in supernatant of cell culture medium (PPβ protein expression was down-regulated, but its phosphorylation inactivation was increased (PConclusion: Puerarin alleviates the insulin resistance of HepG2 cells by strengthening the PI3K/Akt/GSK-3β signal transduction process and increasing the glycogen content in hepatocytes.

SELECTION OF CITATIONS
SEARCH DETAIL